

Monitoring and Optimizing AC/DC Power Supply Performance for Different Applications Using PMBus™

Chris Jones Artesyn Embedded Technologies APEC - 28 March 2017

Outline

- Adoption of PMBus[™] in AC-DC Supplies
 - With Power Supply Examples
 - With Technology and Component Trends
- Application Examples
- Special Application of PMBus over Various Interfaces

Early-Adoption – Configurable Supplies

- Higher Power (1.5KW to 5.0KW) ٠
- Higher Margin (Low Volume, Complex Applications Customers Pay for ٠ Flexibility)

XX-XXX-

0.00

iMP Case:

Model Part Number **Primary FW Version** condary FW Version

PMBus[™] programmability and monitoring added value in both Development ۲ Environments and for Real-Time System Tuning

Copyright 2006-2012, All Rights Rese

- 2005 Release •
 - Probably the first AC-DC 'Catalog' Power Supply with PMBus™

Select Mode

◎ SIMULATION IMP PMBUS MODE

PMBus[™] Benefits - Configurable Supplies

Specification	Standard SMPS	SMPS With PMBus
Turn-On	Fixed	Programmable
Global Inhibit/Enable	Fixed	Programmable
Adjustment Range	Manual +/-10%	Programmable entire module range
OCP	Fixed	Programmable
OTP	Fixed	Programmable
OTW	N/A	Programmable
Software Inhibit	N/A	Programmable
OVP	Fixed	Programmable
DCOK Window	Fixed	Programmable
Module Enable	MOD Only	Programmable
Constant Current	MOD Only	Programmable
Elapsed Time Meter	N/A	Available for Readback
Fan Control	Fixed	Monitor and Override control
Input Status	LED Indication	Monitor Voltage/Current/Power
Output Status	LED Indication	Monitor Voltage/Current/Power/Faults

PMBus[™] Flexibility - Configurable Supplies

Command Transaction Command Transaction Command Command Code Type Code Type CASE FIRMWARE VERSION D0h Read Block READ MODULE VERSION DFh Read Block ACTIVE_SLOTS D2h R/W Byte IOUT SENSOR CALIBRATION E0h Send Byte SMART MODULES D3h R/W Byte OVP LIMIT PERCENT E1h Write Byte MODULE_AUTO_DETECT D4h Send Byte UVP LIMIT PERCENT E2h Write Byte PSU CONFIG D5h R/W Byte MODULE OTP LIMIT E3h Write Byte PSU_SETUP MODULE_CONFIG_FLAGS Write Byte D6h Read Byte E4h LOAD PREDEFINED SETTING TOTAL POWER D7h Read Word E5h Write Byte CASE STATUS BYTE D8h Read Byte MODULE VSCALE CALIBRATION E6h Write Word CASE FAULT BYTE Read Byte MODULE OPERATIONS Read/Write Word D9h E7h MODULE COMMUNICATION ERROR BYTE DAh Read Byte PSU_MONITOR E9h Read Block MODULE_MONITOR MODULE_STATUS_FLAGS DBh Read Byte EAh Read Block EXTRACT MODULE CONFIG BYTES DCh Read/Write Word OVER POWER LIMITS EBh Read/Write Block READ MODULE CONFIG BYTES DDh Read Block OUTPUT INDEX ECh Read/Write Word EXTRACT_MODULE_VERSION DEh Send Byte

MP Monitoring Panel	
Input Exaconcis 0 0 0 0 0 0 0 0 0 0 0 0 0	Tel: Tel: Tel: Off Off Off Off Off Off Off Tel:
0 Days of Paraget Days of Paraget Day	Std: Numit: 0.000 million Proce Uith: 000 million Uith: 000 million
Pressy Tesu: 27. <	Mot 3.3V Mot Test Test State 200 m/S /v Test Test Control /v Control /v </td
	impedance and the second
Address: B	

©2017 System Management Interface Forum

Controller Architecture with PMBus

• Traditional control architecture

- Analog controller + optional MCU for digital communication
 - Cost Adder, but cost effective for optional communication!
 - Minimum learning curve
 - Tailored controllers
- Digital control architecture
 - Control and communication handled by a digital controller
 - Flexibility
 - Reduced parts counts
 - Built-in digital communication

Component Technology Evolution

	Cost competitive Choices emerge	Coincides with Ar ● 1st Digital Contro ●1 st PMBus [™] Fror	rtesyn's (fka Emerson) ol Front-End (07) nt-End (08)	System Managemen Interface Forum
	General purpose DSCs	SMPS D	SCs	Microcontrollers
MIPS: Bytes Flash: Bytes RAM: ADCs:	GEN 1 32 16-32K 4K 2x 3-ch,12-bit (1 125us (cample)	GEN 2 32 32K 8K 2x 8-ch,12-bit	GEN 2 (alt) 40 16K 2K 12x,10-bit	GEN 3 800 1024K 204K 4 x 16/12 bits
Comparator: DAC: Timers: PWM Outputs:	(1.125us/sample) None Ax PWM	(1.125us/sample) 2x Analog 2x 12-bit 4x PWM	4x Analog None 3x GP (2x PWM) 8x PWM (4 pairs)	(1.1msps/channel) 24
Relative Cost: Features:	2.0 Basic	1.0 Peak-by-peak current o Analog output availabil Remappable I/Os for o	0.65 control capable lity ptimum flexibility	2.2 Dual-Core Architecture Two 32-Bit CPUs 200 MHz Single –Precision FPU + TMU
7	2006	2008 ©2017 System Managemer	nt Interface Forum	2018 System Management New Management 1.3 System Management Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Support Su

Early Adoption – Server Power Supply

- Not as Cost Sensitive as some (Blade Server)
 - Primary side DSP
 - Secondary side DSP
- Extensive Command Set

Command

 – 63 PMBus[™] Commands implemented, including:

31h	POUT_MAX		5Ch	IIN-OC-FAULT_RESPONSE
35h	VIN_ON		5Dh	IIN_OC_WARN_LIMIT
 36h	VIN_OFF		5Eh	POWER_GOOD_ON
38h	IOUT_CAL_GAIN		5Fh	POWER_GOOD_OFF
 39h	IOUT_CAL_OFFSET		60h	TON_DELAY
3Ah	FAN_CONFIG_1_2		61h	TON_RISE
3Bh	FAN_COMMAND_1		64h	TOFF_DELAY
40h	VOUT_OV_FAULT_LIMIT		78h	STATUS_BYTE
41h	VOUT_OV_FAULT_RESPONSE		79h	STATUS_WORD
42h	VOUT_OV_WARN_LIMIT		7Ah	STATUS_VOUT
43h	VOUT_UV_WARN_LIMIT		7Bh	STATUS_IOUT
44h	VOUT_UV_FAULT_LIMIT		7Ch	STATUS_INPUT
45h	VOUT_UV_FAULT_RESPONSE		7Dh	STATUS_TEMPERATURE
46h	IOUT_OC_FAULT_LIMIT		7Eh	STATUS_CML
47h	IOUT_OC_FAULT_RESPONSE	1	80h	STATUS_MFR_SPECIFIC
48h	IOUT OC LV FAULT LIMIT	1	81h	STATUS_FANS_1_2

©2017 System Management Interface Forum

 SDA
 SCL
 A2
 A1
 A0

 SMBALERT#
 CONTROL

THIN IS A CONTRACT OF A CONTRACT

-	
Code	Name
01h	OPERATION
02h	ON_OFF_CONFIG
03h	CLEAR_FAULTS
10h	WRITE_PROTECT
11h	STORE_DEFAULT_ALL
12h	RESTORE_DEFAULT_ALL
15h	STORE_USER_ALL
16h	RESTORE_USER_ALL
19h	CAPABILITY
20h	VOUT_MODE
21h	VOUT_COMMAND
22h	VOUT_TRIM
23h	VOUT_CAL_OFFSET

VOUT MAX

Command

24h

8

PMBus[™] Benefits – Server Power Supply

- Facility management
 - Power system health reporting and monitoring
 - Thermal management
 - Protection of power system
- Rack-level management
 - Server-level power reporting and monitoring
 - Fault management and logging
 - Power budgeting
- System level optimization for optimizing power losses at different conditions

Performance a	nd Feature Evc	olution		SMI
	 Reporting accuracy capability at 1% Energy reporting 			System Management Interface Forum
Standard Pivibus commands Paranting accuracy	System-optimized			
• Reporting accuracy typically at 5%	• In-system programming • E	auit logging vent logging		
Manufacturer specific	• Ir	nminent fan failure		
in configs	р	rediction	• Throttle (Intel)	
	Increase in manufation to ad	acturer specific comn d feature sets	nands	
2005	2009		2015 PM	2020 System Management SMBUS
10	©2017 System Ma	anagement Interface Forum	Power Management. Defined.	1.3 Smart Battery System Implementers Forum

Power loss optimization

- Objective: Reduce power supply losses at system idle, sleep, and hibernate mode
- Main commands used

01h	OPERATION
8Ch	READ_IOUT
79h	STATUS_WORD
D0h	MFR_SPECIFIC_00

- Description
 - Provides different levels of power supply operating modes depending on system status and load

• Super-capacitor charging

- Objective: Provide a method of charging a bank of supercapacitors
- Main commands used

01h	OPERATION
46h	IOUT_OC_FAULT_LIMIT

- Description
 - Series of IOUT_OC_FAULT_LIMIT commands issued by the host to allow for charging a bank of super-capacitors for energy storage.

- System Airflow Matching
 - Objective: Optimize the airflow through power supply while accounting for the backpressure that system fans will present
 - Main commands used

3Bh	FAN_COMMAND_1
8Dh	READ_TEMPERATURE_1
8Eh	READ_TEMPERATURE_2
8Fh	READ_TEMPERATURE_3
90h	READ_FAN_SPEED_1

- Description
 - Power supply internal fan speed adjustment to manage backpressure, acoustic noise, and airflow recirculation

- Active Management in response to Line Voltage
 - Objective: Maximize usage for 115Vac and 230Vac
 - Main commands used

88h	READ_VIN
D0h	MFR_SPECIFIC_00

- Description
 - Voltage Monitored
 - System reconfigured based on Line

- Simultaneous Dynamic Management of Voltage and Current
 - Electrolysis Salt concentration
 - Objective: Monitor and Adjust V and I to maintain Salt Concentration
 - Main commands used

8Bh	READ_VOUT
8Ch	READ_IOUT
D0h	MFR_SPECIFIC_00

- Description
 - Voltage Monitored
 - Current Monitored
 - Estimate Salt Concentration
 - Adjust

System Management Interface Forum

- Wide Range Outputs
 - Objective: Programmable Power
 Supply with Outputs from 2V to 36V
 - Main commands used

21h	VOUT_COMMAND
D0h	MFR_SPECIFIC_00

- Description
 - EEPROM values adjusted to facilitate wide range
 - Voltage commands sent to power supply modules via PMBus[™] interface

System Management Interface Forum

- Timing Sequence
 - IC Tester
 - Objective: Adjust sequencing and timing delays
 - Main commands used

60h	TON_DELAY
64h	TOFF_DELAY
D0h	MFR_SPECIFIC_00

Next Level Implementation of PMBus over various interfaces

Next Level Implementation of PMBus over various interfaces

^{©2017} System Management Interface Forum

Next Level Implementation of PMBus over various interfaces

System Management Interface Forum

> System Management

> > Smart Battery System Implementers Forum

SM:ITS

CONCLUSION

- PMBus command structure can easily be leveraged for all Power system applications.
- User created Dashboards are designed for simple drag and drop widgets that are assigned to PMBus commands, and can be used to create basic to complex scripts for high level system control.

System Management Interface Forum

System Management Interface Forum

Thank you! Questions?

